YBCO High-Rate In-Situ Coated Conductor Process

Robert H. Hammond
Jeong-uk Huh, William Jo, M.R. Beasley
Geballe Laboratory for Advanced Materials, Stanford University

Department of Energy 2003 Wire Development Workshop
January 23, 2003
St. Petersburg, Florida

Guidelines (by Organizers) for Talks on CC Research at Universities:

- Meet Goals of Long Length with Good Properties
 - Yes: C/P of ~ \$1/kA·m Feasible in Future
- Apply to On-Going Effort at National Labs Discussion at Industries – Not at present
- Apply to One Specific Process?
 - Results Broadly Applicable to Most Processes
- New Ideas, Directions? Yes:
 - Generally...
 - High Rate, Large Area, High Ic and Low Cost of Materials Processes
 Will Eventually be Required Not Immediately but in 10 Years
 - High Rate May Require Growth in Liquid Flux

AFOSR-MURI Program on Coated Conductor Program at Stanford

- Scanning Probe Studies SQUID, Hall, Potential
 - K. Moler & students, M.R. Beasley & students
- Alternate Materials 248 YBCO
 - T.H. Geballe & G. Koster(Res. Assoc.)
- FTIR Temperature & Optical Properties
 - G. Koster & M.R. Beasley
- Thickness Dependence of J_c
 - W. Jo(Res. Assoc.) & M.R. Beasley
- Phase Stability, Phase Relationships in YBCO*
 - J.U. Huh(Student) & R. Hammond

^{*}Organizers Requested Talk on This Aspect Related to DOE

Understanding of High-Rate Process

- High Rate Electron-Beam In-Situ Co-Deposition
- Low Pressure Process (5x10⁻⁵ torr) → Large Area Deposition

- C/P =
$$\frac{\$}{(Rate) \times (Area) \times Jc}$$
 \Rightarrow ~ \$1/K·A·meter Possible

Two Kinds of Growth Morphology + Liquid Flux

Liquid	
Island YBCO	J_c High ~ 5MA/cm ²
Layer-by-Layer YBCO substrate	$J_c = 0$

- \mathcal{R} = Thickness ratio (Island/Total) \propto Rate of Deposition
- Stability Region for High Jc

Two Types of YBCO

Island-Growth

Layer-by-layer Growth

 $t = 0.48 \mu m$ <Jc> = 0.47 MA/cm²

<Jc> = 0.07 MA/cm²

Thicker faulted layer

Higher <Jc>

YBCO Phase Stability:

Stable Within Boundary A, B, C, D - Lindemer, Driscoll

YBCO Phase Stability:

Stable Within Boundary A, B, C, D - Lindemer, Driscoll BaCuO_x Liquid to Left of "E" - Driscoll

YBCO Phase Stability:

Stable Within Boundary A, B, C, D - Lindemer, Driscoll BaCuO_x Liquid to Left of "E" - Driscoll

At Rate: 100 - 150 Å/sec

Liquid Flux Melting Point:

Measurement and Lowering?

Relation to Other YBCO Coated Conductor process: Effect of Liquid Flux Growth

A. YBCO Film Growth (Cont.)

```
Next Issues
```

```
— Confirm High Average Jc 

Rate → 350 Å/sec
         (Fraction of Growth with High Local Jc)
— Thickness Dependence
— Metal Tapes - good growth on RABiTS and YSZ-IBAD
                 - but some reaction
        - Lower Temperature
                 Decrease Oxygen Activity
                 Lower BaCuO Melt Point - F<sub>2</sub>
        - Buffer Layers SrRuO<sub>3</sub>
                          CaHfO<sub>3</sub>
                          Nd<sub>2</sub>CuO<sub>4</sub>
                          LaMnO<sub>3</sub>
— In-situ Measurement
         Oxygen Activity - YSZ solid electro-chemical cell ( AF-MURI
         True Temperature - FTIR
```


Issues Related to Long Term Scale-Up

<u>Sensors for Process Control:</u> Stanford has over a decade involvement Through various support and collaboration of process control

AFSOR
DARPA
3M
New Focus
SC Solutions
Univ. of Michigan
Columbia Univ.
Cal Tech
Princeton

- Tunable Diode Laser Atomic Absorption
 Physics of Evaporation
- Atomic Oxygen Generation and Sensing
- Modeling of Multiple Element Vapor Flow
- Development of RHEED Cal Tech
 Courant Inst.
 LANL
- Process Control SC Solutions
- FTIR Temperature and Optical Property
 Sensing

LLNL

Process Choice Bottom Line:

Cost/Performance Ratio and **Total Current**

$$1000~Amp/cm(width) = Jc \times Thickness \\ Thus, \begin{cases} Jc = 3.3~MA/cm^2 \\ Thickness - 3~\mu m \end{cases} \text{ for example}$$

$$C/P = \frac{\$/\text{year}}{\text{Rate} \times \text{Area} \times \text{Jc}} [\$/\text{KA-m}]$$

Compare Processes:

BaF₂ post-annealing

MOD

MOCVD

PLD

LPE

in-situ

Proposal:

In-situ's High Rate, Large Area, and High Jc Can Overcome High Capital Cost. Material Cost Lowest

Plant Design for 6000km/year 1cm Wide Tape Based on LLNL Vapor Flow Modeling

SCALE UP ISSUES: In-Situ High Rate E-Beam

C/P

→ Lab research in near future:

Rate \uparrow (500 ~ 1000 Å/sec), Jc \uparrow on Tape

Transfer to Production:

Need Sensor of Oxygen Activity

Composition Control - O.K.

Temperature Control - O.K.

Application

— All Metallic Tape

Copper (Alloy) Substrate

Metallic Buffers

Metallic IBAD - New Research Needed

Summary

- Progress in Understanding Phase Stability and Liquid Flux Assisted Growth
- Suggestion that Fraction in High Jc Morphology Improved with High Rate
- <Jc> 2.5MA/cm 2 at 50% Island Fraction, Local Jc ~ 5 MA/cm 2
- Process Temperature Lowering Possible with:
 - Control of Oxygen Activity
 - Addition of F, OH
- Effort to Develop Sensor for in-situ Oxygen Activated Started (Prof. D. H. A. Blank, Univ. Twente)

